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We consider the pentagram map on the space of plane convex

pentagons obtained by drawing a pentagon’s diagonals, recov-

ering unpublished results of Conway and proving new ones.

We generalize this to a ‘‘pentagram map’’ on convex polygons

of more than five sides, showing that iterated images of any

initial polygon converge exponentially fast to a point. We

conjecture that the asymptotic behavior of this convergence

is the same as under a projective transformation. Finally, we

show a connection between the pentagram map and a certain

flow defined on parametrized curves.

INTRODUCTIONA pentagon P , like the one shown on the left,cries out to have its pentagram drawn. Lookinginside the pentagram, one sees a new pentagonP 0. We call the transformation P ! P 0 the pen-tagram map. The pentagram map can be de�nedmore generally. Joining every other vertex of anystrictly convex n-gon P produces a \pentagram"whose center is always another convex n-gon P 0.There is a question of labeling: Strictly speaking,P ! P 0 is a map between unlabeled polygons. Thecomposite map P ! P 00 can unambiguously beconsidered as a map between labeled polygons, asin Figure 1. If n is odd, P 0 can be labeled in aunique way so that P ! P 0 is the square root ofP ! P 00 as maps between labeled polygons.The purpose of this paper is to describe some re-sults and conjectures about the sequence P;P 0; P 00;P (3); : : : Here is an overview. In Section 1, wereview some basic facts about projective geome-try. The pentagram map, which is de�ned en-tirely in terms of lines, behaves naturally with re-spect to any group action on the plane (or partsof the plane) that takes lines to lines. The projec-tive group, which is the largest such group, �guresprominently in our study. c
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In Section 2, we describe what happens for pen-tagons and hexagons. The basic fact is that thepentagons P and P 0 are always projectively equiv-alent, and the hexagonsH andH(4) are always pro-jectively equivalent. This is to say that there areprojective transformations TP and TH of the pro-jective plane for which TP (P ) = P 0 and TH(H) =H(4). We study the correspondences P ! TP indetail and the correspondence H ! TH in muchless detail.In Section 3, we present what we know aboutthe pentagram map in general. Our main resultis that, for every strictly convex n-gon P , the se-quence fP (k)g shrinks exponentially fast to a singlepoint, which thus constitutes a projectively natu-ral \center" for P . This result follows from the factthat the sequence lies in a compact subset of thespace of projective classes of n-gons.The facts run out after Section 3. In Section 4,we present a conjectural picture of the general be-havior of the pentagram map on convex polygons.The picture leads to the statement that asymptot-ically the sequence P;P 0; P 00; : : : behaves like thesequence P; TP (P ); T 2P (P ); : : : for some projectivetransformation TP . Section 4 also contains a de-scription of what happens when the pentagrammap is de�ned in the complex projective plane.In Section 5, we show how the pentagram map isa discrete approximation to a certain 
ow de�nedon parametrized curves and give a heuristic deriva-tion of the equation of this 
ow. The resulting 
owseems to be of current interest to physicists. If thediscrete process is indeed a good approximation tothe 
ow, it probably would be useful for computersimulations.

1. PROJECTIVE GEOMETRYThe following is a list of facts about projectivegeometry that we will use throughout the paper.Most of them can be found in [Hilbert and Cohn-Vossen 1952] or are easy to derive from scratch.RP2 is the space of lines through the origin inR3. Similarly, CP2 is the space of complex linesthrough the origin in C3. For simplicity, we willspeak of the real case. Everything we say appliesverbatim to the complex case. By intersecting thelines of R3 with the plane fz = 1g, we consider R2as a subset of RP2. The set RP2 � R2 is calledthe line at in�nity.The general linear group GL3(R) acts on RP2because linear transformations take lines to lines.If we quotient GL3(R) by scalar multiplication, theresulting group PGL3(R) still acts on RP2. Ele-ments of this group are called projective transfor-mations. Two sets are said to be projectively equiv-alent if there is a projective transformation takingone to the other.A line of RP2 is the set of lines of R3 containedin a two-dimensional linear subspace. In particu-lar, the line at in�nity corresponds to the subspacefz = 0g: Projective transformations permute theselines. The projective transformations that preservethe line at in�nity restrict to give the a�ne trans-formations of R2.A set of points is said to be in general positionin the projective plane if no three points lie on thesame line. In particular, a quadrilateral in RP2 isa set of four general position points. Here is a con-venient characterization of the projective group:There is a unique projective transformation thattakes one speci�ed quadrilateral to another speci-�ed quadrilateral.Suppose l1; : : : ; l4 are four linear subspaces ofR2. Suppose further that sj is the slope of lj . Thenthe cross ratio
X(l1; l2; l3; l4) = (s1 � s2)(s3 � s4)(s1 � s3)(s2 � s4)

is invariant under projective transformations thatpreserve the origin of R2. This implies that Xextends to a well-de�ned invariant of four cycli-cally ordered lines of RP2, which contain a com-mon point. Moreover, if m is any line that does
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not contain the origin, and m1;m2;m3;m4 are itsintersections with l1; l2; l3; l4, we haveX(l1; l2; l3; l4) = km1 �m2k km3 �m4kkm1 �m3k km2 �m4k :This formula de�nes the cross ratio of four cycli-cally ordered collinear points. The de�nition is in-dependent of the choice of the lines lj and is againprojectively natural.In particular, suppose m1 and m2 are two linesand p is a point belonging to neither line. Then pde�nes a projection mapmp : m1 ! m2 (Figure 2).It is not hard to verify that mp preserves crossratios of points.

p m1
m2

x1 x2

y1
y2

FIGURE 2. The projection mp with center p takesx1 to y1 and x2 to y2.In the next section, we will work with conjugacyclasses of (diagonalizable) projective transforma-tions. Let T be an element of PGL3(R) and let T̂be a representative of T in GL3(R). De�ne �j(T̂ )by the formuladet(T̂ � �I) = ��3 + �1(T̂ )�2 � �2(T̂ )�+ �3(T̂ ):Then �1�2=�3 and �31=�3 only depend on the con-jugacy class of T in PGL3(R), and completely de-termine the conjugacy class of a diagonalizable el-ement of PGL3(R).
2. PENTAGONS AND HEXAGONS

PentagonsThe pentagram map is de�ned on a pentagon P|even a nonconvex one|as long as the �ve pointsof P are in general position in the (complex) pro-jective plane.The basic fact for pentagons is the following.

Theorem 2.1. The pentagons P and P 0 are projec-tively equivalent.This means that there is a projective transfor-mation TP so that TP (P ) = P 0. I discovered thisexperimentally, and the fact is easy to prove alge-braically. John Conway (personal communication)also discovered this fact years ago. He has a slickproof, which we sketch here.Proof: Given a pentagon P = (p1; : : : ; p5), let li;jbe the line containing pi and pj. De�neXk = X(lk�1;k; lk�2;k; lk+2;k; lk+1;k);where X is the cross ratio (Section 1). We call Xka corner invariant of P . It is easy to verify thatthe projective class of P is completely determinedby its corner invariants. By symmetry, we justhave to see that X5(P ) = X5(P 0), for example.Figure 3 shows that projection from the point p5p1
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FIGURE 3takes (p1; p03; p02; p4) to (p04; p002; p003; p01). Therefore,X5(P ) = X(p1; p03; p02; p4) = X(p04; p002; p003; p01)= X(p01; p003; p002; p04) = X5(P 0):The third equality is a general symmetry of thecross ratio. This proof works just as well in thenonconvex case.Since the pentagram map commutes with pro-jective transformations, we haveP (n) = TnP (P ):
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If TP is known, this formula tells practically allthere is to know about the successive images of Punder the pentagram map.First we discuss TP when P is a convex planarpentagon. In this case, we will usually take P tobe the planar domain consisting of both the \pen-tagon proper" and its interior. In our situation,we have P 0 � P � P (�1). From this, it is easy todeduce that TP �xes a unique point c(P ) 2 P anda unique line l(P ) that misses P entirely. Further-more, P (n) shrinks to the point c(P ) as n ! 1.The \asymptotic shape" of P (n) is determined bythe di�erential d(P ) = dTP jc(P ):
Theorem 2.2. For a convex pentagon P , the deriva-tive d(P ) is diagonalizable.In fact, the eigenvalues of d(P ) are equal if andonly if P is projectively equivalent to the regularpentagon (this will be shown later in the formu-las). This means that the pentagram map shrinksa random convex pentagon exponentially fast toa point at two di�erent exponential rates. If thesuccessive images of such a pentagon are rescaledto have constant area, they become exponentiallylong and thin in shape.Proof: We �rst move P by a projective transfor-mation so that c(P ) = 0 and l(P ) is the line atin�nity. Then d(P ) = TP . If d(P ) is not diagonal-izable, we can, by conjugation, assume either thatd(P ) is upper triangular or that d(P ) is a rotationby � 6= 180�. We will argue that the latter casecannot happen. A slight modi�cation of the sameargument rules out the former case as well.If d(P ) = TP is a rotation by, say, more than180�, the two lines p2p3 and p02p03 (in the notationof Figure 3) converge to the right of P . This meansthat area�p2p3p4 > area�p2p3p1:This argument can be repeated beginning with anyof the �ve sides of P . Going counterclockwise, weobtainarea�p2p3p4 > area�p1p2p3 > area�p5p1p2> area�p4p5p1 > area�p3p4p5 > area�p2p3p4;which is a contradiction.Now consider a general pentagon P . If we wantto see what the successive images of P look like

under the pentagram map, it su�ces to considerthe behavior of the pentagram map on any pro-jective image of P . Choosing di�erent projectiveimages means looking from di�erent perspectives.Concretely, we have the formulaTG(P ) = G � TP �G�1for any projective transformation G. This gives usa correspondence between projective classes of pen-tagons and conjugacy classes of projective transfor-mations.This correspondence carries over to pentagonsin the complex projective plane. One just putsthe word \complex" before every statement. Let
 be the set of (complex) projective classes of pen-tagons. We will abbreviate this correspondence by[P ]! [TP ]: If a pentagon P is normalized so thatits �rst four points coincide with the points (1; 0),(0; 0), (0; 1) and (1; 1), the �fth point uniquely de-termines the conjugacy class. To satisfy the gen-eral position condition, this �fth point must missthe six (complex) lines joining these four pointstwo by two. In other words, 
 can be identi�edwith the complement of six particular (complex)lines in the (complex) projective plane.Recall from Section 1 that the functions �1�2=�3and �31=�3 uniquely determine the conjugacy classof a projective transformation. Therefore our cor-respondence [P ]! [TP ] can be described by thesetwo functions. I found the following equations ex-perimentally: �1�2�3 � �1; (x; y) = �31(x; y)�3(x; y) = x(x� y)(x+ y � 1)y(y � 1)(x� 1) :The equation for  extends by continuity to pointsin 
 � C2, giving rise to a holomorphic function.We omit the derivation of these equations. Theycan easily be veri�ed by computer or derived byusing, say, Mathematica [Wolfram 1991].Our formulas say that the correpondence [P ]![TP ] is determined by the single holomorphic func-tion  . Furthermore, the formula for  allows oneto compute the value of  explicitly for any givenprojective class of pentagons. In particular, onecan verify the statements made earlier about theaction of the pentagram map on a random convexpentagon.



Schwartz: The Pentagram Map 75

HexagonsLet H be a labeled hexagon, that is, a sextuple ofpoints in general position in the (complex) pro-jective plane. Let H# denote the hexagon ob-tained by permuting the points of H according tothe permutation (123456) ! (456123). Note thatH## = H.The pentagram map is well-de�ned only on anopen dense set of labeled hexagons, because for asextuple of points in general position the intersec-tions of diagonals need not be in general position.The basic fact for hexagons is the following.
Theorem 2.3. The hexagons H# and H 00 are projec-tively equivalent.Again I discovered this by computer. The alge-bra required to verify this fact is monstrous, butpossible to do. One can construct an alternate\complex analysis" proof, based on the techniquepresented in the next section. We omit the details,because they are long and tedious. Another reasonfor the omission is that neither the algebraic proofnor the analytic proof gives any clue to why thistheorem should be true. It would be nice to havea conceptual proof.Let TH be the projective transformation satisfy-ing TH(H#) = H 00. Then we have the formulaH(4n) = TnH(H):I have not spent much time analyzing the corre-spondence [H]! [TH ], but I can make several re-marks, analogous to those for pentagons.In the case of convex hexagons, the fact thatH 0 � H � H�1 implies that TH �xes a pointc(H) 2 H and a line l(H) missing H entirely. Thismeans again that the long-term behavior of thepentagrammap onH is determined by the di�eren-tial d(H) = TH jc(H): Computer experiments showthat d(H) is not diagonalizable in general|bothother possible conjugacy classes of maps (shearsand rotations) occur. Hexagons for which d(H) isnot diagonalizable can be found by looking at ran-dom perturbations of the regular hexagon. They'rehard to �nd, but they're there.For general hexagons, the correspondence [H]![TH ] ought to have a description in terms of thetwo functions �1�2=�3 and �31=�3. Both functionsare holomorphic and nonconstant, but I have notworked out the formulas.

3. CONVEX POLYGONSIn this section, we consider the pentagram mapon strictly convex planar polygons. For short, wewill usually just say \convex" instead of \strictlyconvex." Sometimes it is convenient to use the pro-jective plane instead of the Euclidean plane. Wewill indicate when we switch back and forth.Computer experiments show that, in general, thepentagram map on projective classes of polygonsis not periodic. In other words, if �n denotes themanifold of convex n-gons up to projective equiva-lence, the induced map [P ]! [P 0] on �n does notreturn to the identity under iteration.By normalizing the �rst four points of an n-gon, it is easy to see that �n is an open (2n� 8)-dimensional ball. One can get a rough impres-sion of the orbits in �n by looking at the imageof a single point. This means looking at certaintwo-dimensional projections of the orbit. The �rstthing I noticed was that the orbit of any point in�n is always contained in a compact subset of �n.Assuming this for the moment, we can provethat the pentagram map shrinks convex polygonsto points exponentially fast.
Theorem 3.1. If P is a convex planar polygon, thereis some �P < 1 for which diamP (k) < �kP diamP:Proof: The diameter of a convex polygon is equalto the largest distance between two vertices. If,contrary to the theorem's statement, the ratio be-tween the diameters of consecutive polygons canget arbitrarily close to 1, it follows that the quan-tity

maxs kbs � cskkas � dsk ;where as; bs; cs; ds are the points shown in Figure 4and s ranges over all pairs of distinct vertices, alsogets arbitrarily close to 1. But it is easy to see thatthis maximum ratio is bounded away from 1 in anopen neighborhood of any convex polygon. Since,by the compactness assumption, we can cover theorbit of p with a �nite number of such open neigh-borhoods, we arrive at a contradiction.To complete the proof of Theorem 3.1, we haveto show that the orbit of P in � = �n indeed hascompact closure. The following proof relies essen-
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as bs
cs ds

FIGURE 4tially on a miracle. While searching for invariantsof the pentagram map, I noticed that the equationYp2P Xp(P ) = Yp02P 0Xp0(P 0)
holds true for every convex polygon, where Xp(P )is the corner invariant introduced in the beginningof Section 2. The proof is instructive because itillustrates one method for establishing the truth ofa computer-generated equation that seems impos-sibly large.
Lemma 3.2. The orbit of any polygon P under thepentagram map has compact closure in �.Proof: Set f(P ) = Qp2P Xp(P ). The lemma is animmediate consequence of the following propertiesof the function f :1. The level sets of f are compact in �.2. f(P ) = f(P 0).The function f is the product of n functions, eachbeing the cross ratio of four lines determined byP . To study f , we need information on how thecross ratio of four given lines changes as the lineschange.Given two functions g1 and g2, we write g1 � g2if there are positive constants C and " such that1C � g1(t)g2(t) � Cfor �" � t � ". Let S(t) = fl1(t); l2(t); l3(t); l4(t)gbe a one-parameter family of ordered quadruples oflines such that each individual quadruple containsa common intersection point. We say that S(t)has a simple (i; j) degeneration if 6 (li(t); lj(t)) � t

and if 6 (lp(t); lq(t)) � 1 for all remaining pairs(p; q). It is easy to deduce the following infor-mation about the behavior of the function Z(t) =X(l1(t); l2(t); l3(t); l4(t)) as t! 0.Degeneration Asymptotics(1; 2) Z � t(1; 3) Z � 1=t(1; 4) Z � 1(2; 3) Z � 1(2; 4) Z � 1=t(3; 4) Z � tProof of property 1: We show that, if fPng 2 � isa sequence with no convergent subsequence, f(Pn)converges to 0, and therefore fPkg cannot be con-tained in a level set of f ; thus the level sets of fare compact.We normalize so that the �rst four vertices ofPn are (1; 0), (0; 0), (0; 1) and (1; 1). Let p5(n)be the �fth vertex of Pn; then p5(n) must lie inthe interior of the triangle T 2 RP2 bounded bythe lines y = 0, y = 1 and x = 0. By takingsubsequences and possibly relabeling, it su�ces toprove that fp5(n)g ! � 2 @T implies f(Pn)! 0.Referring to Figure 5, we see that if p5 = p5(n)approaches any point of @T on the line y = 0 (in-cluding the point at in�nity), the corner invari-ant X2 approaches 0, and consequently so does f(since, for a strictly convex polygon, every corner
T

p1p2

p3 p4
p5

FIGURE 5invariant is positive and less than 1). Likewise, ifp5 approaches the line y = 1, we have X3 ! 0. Fi-nally, if p5 approaches the line x = 1, considerationof the sixth vertex in Pn (which lies in the triangleformed by the line x = 0, the segment p1p5 and theextension of the segment p4p5) shows that X4 ! 0.Proof of property 2: Given a strictly convex planarn-gon P , let Px denote the set of n ordered pointsin RP2 obtained by replacing the last point of Pby the point x. Beginning with the regular n-gon,
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p1 p2
p3x = p0

L
FIGURE 6. The cross ratio X1 (say) has a zero ifand only if the directions p1p0 and p1p�1 coincideor the directions p1p2 and p1p3 coincide. As onlyx = p0 varies, this happens if and only if p0, p1 andp�1 are aligned, that is, if and only if p0 = l1;�1\L.Similar arguments give the zeros and poles of allthe Xi.we can move one point at a time until we obtainany other polygon P . Therefore, it su�ces to provethat for every P , the function'P (x) = f(Px)f(P 0x)is constant wherever it is de�ned.Let P be a �xed polygon and L a �xed line ofCP2. Assume for the sake of exposition that Phas enough points so that, in the argument be-low, all distinctly labeled points are in fact dis-tinct. Also assume that L is in general positionwith respect to all lines mentioned below: Thereshould be no triple intersections and no intersec-tions at in�nity. Since our constructions will al-ways involve only �nitely many lines, one can takeL to be a small perturbation of any given line. Leth(x) = f(Px)jL and h0(x) = f(P 0x)jL. We provethat 'P jL is constant by showing that the ratio-nal functions h and h0 have the same singularities.Recall that h = QXj and h0 = QX 0j , where X 0j(x)is the j-th corner invariant of the polygon P 0x. Tocompute the singularities of h and h0, we just haveto compute the corresponding singularities of theXj and the X 0j .Let qi;j = li;j \L, where li;j is the line joining piand pj. Away from the points qi;j , h is �nite andnonzero because every Xj is. As x varies on L,only the �ve functions X�2, X�1, X0, X1 and X2change at all, where the indices are taken modulon. By reasoning as in Figure 6, or by using the

p0�:5p00:5
p03:5

p01:5 p02:5x = p0
L

FIGURE 7. The cross ratio X 01:5 has a zero if andonly if the directions p01:5p0:5 and p01:5p�:5 coincideor the directions p01:5p02:5 and p01:5p03:5 coincide. Asonly x = p0 varies, the second coincidence can-not occur, and the �rst entails p0:5 = p0�:5, that is,x = l1;�1 \ L. Similar arguments give the zerosand poles of all the X 0i.table of asymptotics given earlier, we get for thesefunctions the singularities listed in Table 1.Function Poles ZerosX�2 q�2;�3 q�1;�2X�1 q�1;�3 q1;�1X0 q2;�1; q1;�2 q1;2; q�1;�2X1 q1;3 q1;�1X2 q2;3 q1;2
TABLE 1Computing the singularities of the X 0i, thoughmore tedious, is once more just a matter of goingthrough all possibilities for coinciding directions;see Figure 7 for a typical case. It is convenientto label the vertices of P 0x with half-integers, sothe functions comprising h0 are X 0:5;X 01:5; : : : As xvaries on L, only the eight functions X 0�3:5; : : : ;X 03:5 are a�ected. The resulting singularities arelisted in Table 2.From Tables 1 and 2, we see that h = QXj andh0 = QX 0j have the same singularities, and there-fore that 'P jL is constant. This implies that 'P isconstant everywhere, because any two points in thedomain of 'P can be connected to an appropriatethird point by allowable lines L0 and L00.Our proof is complete except for the assumptionthat P has su�ciently many vertices. We com-plete the proof by showing that the invariance of fon convex 2k-gons implies its invariance on convex
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Function Poles ZerosX 0�3:5 q�2;�3 q�2;�4X 0�2:5 q�2;�4 q�2;�1X 0�1:5 q2;�1 q1;�1X 0�:5 q1;3 q1;2X 0:5 q�1;�3 q�1;�2X 01:5 q1;�2 q1;�1X 02:5 q2;4 q1;2X 03:5 q2;3 q2;4
TABLE 2k-gons. Choose a family fPng of (nonconvex) 2k-gons, each of which more and more nearly wrapstwice around a �xed k-gon P . By analytic contin-uation, f(Pn) = f(P 0n). By continuity,

f2(P ) = lim f(Pn) = lim f2(P 0n) = f2(P 0):
Since f(P ) and f(P 0) are both positive, we getf(P ) = f(P 0).This concludes the proof of Lemma 3.2, and alsoof Theorem 3.1.Theorem 3.1 gives us a way to assign to P aprojectively natural center c(P ) = TP (n), whichis analogous to the center de�ned for pentagons inthe previous section. It is easy to see that c(P )varies continuously with the vertices of P . A pro-jective center is like the center of mass, but it ismore symmetric. The center of mass is naturalwith respect to the a�ne group, whereas a pro-jective center is natural with respect to the largerprojective group.

Open Questions1. What are necessary and su�cient conditions ona convex polygon P in order for P and P 00 tobe projectively equivalent? I can prove that itsu�ces for P to be simultaneously inscribed in,and circumscribed about, a conic. Is this con-dition also necessary?2. In Theorem 3.1, are there e�ective estimates for�(P ) based on the geometry of P?3. Does the projective center c(P ) depend analyt-ically on the vertices of P?4. Does Theorem 3.1 have a conceptual proof, thatis, one that doesn't require the aid of a miracle?
4. DYNAMICSSaying that the orbits of points in �n are precom-pact (Theorem 3.1) still leaves a lot to the imagi-nation. Probably, more can be said.Computer evidence, such as that shown in Fig-ure 8, suggests that the pentagram map is recur-rent on �n. This is to say that every [P ] 2 �n is anaccumulation point of the sequence [P 0]; [P 00]; : : :Another way of putting this is that in�nitely manyiterates of a convex polygon P are projectivelyequivalent to P , up to an arbitrarily small error.
Conjecture 4.1. The pentagram map is recurrent on�n.Here is a description of Figure 8. If P is a poly-gon, let P̂ denote the projectively equivalent poly-gon whose �rst four points correspond with theunit square. Also, let Pk denote the k-th vertex ofP . Then Figure 8 shows dP (2n)5 for 1 � n � 200.In other words, each point in Figure 8 is the pro-
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FIGURE 8. Projection of the orbit in �7 of a bilaterally symmetric heptagon under the pentagram map,showing that the orbit is recurrent (Conjecture 4.1). The normalization is described in the paragraph followingConjecture 4.1.
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jection of some point in �n. To generate Figure 8,we took the simplest nontrivial example, which isa heptagon having bilateral symmetry. The pro-jection of this orbit in �n is a simple closed curve,indicating that the orbit of P in �7 is a simpleclosed curve. Furthermore, the successive pointsof the orbit seem to be evenly spaced about thiscurve.The next simplest case is that of a generic hep-tagon. A picture analogous to Figure 8 can bedrawn for this case as well. One can best appre-ciate such a picture by watching it being drawndynamically. I have done so, and my impressionis that the orbit of a generic point in �7 �lls outa two-dimensional torus. This seems to be true ingeneral, though the computer evidence is harder tointerpret. Here is one form of this conjecture:
Conjecture 4.2. Generically, the closure of an or-bit in �n is a torus (of some intermediate dimen-sion). There is a natural 
at metric on this torusfor which the restriction of the pentagram map isan isometry.This says that the orbit of [P ] is recurrent ina very orderly way. If [P (n)] is very close to [P ],there is a projective transformation Tn for whichP (n) = Tn(P ) is very nearly true. Perhaps there isa well-de�ned limitTP = limn!1T 1=nn :

If this is true, asymptotically the sequence P , P 0,P 00, : : : remains close to the sequence P , TP (P ),T 2P (P ), : : : As for pentagons and hexagons, thiswould give a way to predict the general behaviorof the pentagram map on P .The pentagram map can be de�ned in a widersetting. Let Sn denote the set of n-tuples of generalposition points in the complex projective plane.Also letSn(k) = fP : jjj � k ) P (j) 2 Sng:It is easy to see that Sn(k) is an open dense subsetofCP2�� � ��CP2 that has full measure. (Its com-plement is a �nite union of lower-dimensional sub-varieties.) Furthermore, Sn(k) is PGL3(C)-equi-variant. Consequently, all forward and backwarditerates of the pentagram map are well-de�ned onthe full-measure equivariant subset TSn(k): Tak-ing the quotient by the projective group, one hasa well-de�ned iteration in
n =\Sn(k)=PGL3(C):In some sense, 
n is the complexi�cation of the set�n discussed in Section 3.Computations like the one shown in Figure 9support the following conjecture:
Conjecture 4.3. The pentagram map is recurrent on
n.

FIGURE 9. The action of the pentagram map on a 14-gon that wraps twice around the regular heptagon. (Wetake a small perturbation to produce some interesting behavior.) After about thirty iterations, the polygonnearly returns to its original shape (up to a projective transformation).
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Imagine writing out the Encyclopaedia Britan-nica by hand and then taking a �ne polygonal ap-proximation. (You have to connect the last letterto the �rst one to get a closed polygon.) Applyingthe pentagram map several thousand times wouldturn the script into a seemingly random scribble.However, Conjecture 4.3 says that after an enor-mous number of additional iterations, the scribblewould reassemble itself into another handwrittenversion of the Encyclopaedia!
5. THE LIMITING FLOWThe pentagram map seems to be a discrete ana-logue of a 
ow on parametrized curves: As wetake �ner and �ner polygonal approximations tothe curve, the action of the pentagram map ap-pears to converge to a 
ow (Figure 10). We givehere a heuristic derivation of the equation for thislimiting 
ow.Suppose Pn is an n-gon consisting of n pointson the curve C that are evenly spaced accordingto the parameter. The corresponding vertices ofPn and P 00n are about n�2 apart. To move Pn adistance t away from itself, one needs to make tn2iterations. If the pentagram map does converge toa 
ow Ct, we should have

dCt(s)dt ����0 = limn!1n2Nn(s);

where Nn(s) is the vector from P (n)i (the i-th ver-tex of P (n), corresponding to the value s of theparameter) to P (n+2)i .Computing this limit is quite messy algebrai-cally. However, it is easy to see that P (n+2)i is ap-proximated by the intersection of the lines P (n)i�1P (n)i+2and P (n)i+1P (n)i�2. Denoting by Mn(s) the vector fromP (n)i to this intersection point, we havelimn!1n2Nn(s) = limn!1n2Mn(s):This limit is much easier to compute:limn!1n2Mn(s) = C 00(s)� 23W (s)C 0(s);W = det(C 0; C 000)det(C 0; C 00) ;the derivatives being with respect to the parameters. Thus the evolution equation isdCt(s)dt ����0 = C 00(s)� 23W (s)C 0(s):Recall that our proof of Theorem 3.1 relies onthe function f(P ) = Yv2P Xv(P ):
The equation f(P ) = f(P 0) has an analogue here.The quantity f(Pn) tends to1 with n, so we haveto be a little careful taking limits. Assuming that

FIGURE 10. Action of the pentagram map on 10-, 19- and 30-sided polygonal approximations to the parame-trized circle (cos �(t); sin �(t)), where �(t) = t+ :1 cos t+ :07 sin(2t+�=3)+ :1 cos(3t+�=5). The spacing betweensuccessive images appears to be the same in the three pictures because the time step has been renormalized: itcorresponds to one iteration of the pentagram map in the �rst picture, four in the second and nine in the third.
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v = C(s) is always a vertex of Pn, the followinglimit is well-de�ned: (s) = limn!1n2 log(9 Xv(Pn)):It is not hard to work out the equations = �A13A12�0 � 3 �A13A12�2 � 3 A23A12 ;where Aij = det(C(i); C(j)):Then the integral RS1  (s) ds is conserved by the
ow.The invariant  is one of the two projective dif-ferential invariants of a (nondegenerate) curve im-mersed in the projective plane. Both the 
ow andthe conserved quantity are known to physicists (seefor example [Drinfeld and Sokolov 1985; DiFran-cesco et al. 1990]). I don't know how well the pen-tagram map approximates the 
ow. It would benice if the approximation was good, because thenthe discrete process would give an easy way to sim-ulate the 
ow by computer.
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