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We consider the pentagram map on the space of plane convex
pentagons obtained by drawing a pentagon’s diagonals, recov-
ering unpublished results of Conway and proving new ones.
We generalize this to a ““pentagram map’’ on convex polygons
of more than five sides, showing that iterated images of any
initial polygon converge exponentially fast to a point. We
conjecture that the asymptotic behavior of this convergence
is the same as under a projective transformation. Finally, we
show a connection between the pentagram map and a certain
flow defined on parametrized curves.

INTRODUCTION

A pentagon P, like the one shown on the left,
cries out to have its pentagram drawn. Looking
inside the pentagram, one sees a new pentagon
P’. We call the transformation P — P’ the pen-
tagram map. The pentagram map can be defined
more generally. Joining every other vertex of any
strictly convex n-gon P produces a “pentagram”
whose center is always another convex n-gon P’.

There is a question of labeling: Strictly speaking,
P — P’ is a map between unlabeled polygons. The
composite map P — P” can unambiguously be
considered as a map between labeled polygons, as
in Figure 1. If n is odd, P’ can be labeled in a
unique way so that P — P’ is the square root of
P — P" as maps between labeled polygons.

The purpose of this paper is to describe some re-
sults and conjectures about the sequence P, P’, P,
P(?’),... Here is an overview. In Section 1, we
review some basic facts about projective geome-
try. The pentagram map, which is defined en-
tirely in terms of lines, behaves naturally with re-
spect to any group action on the plane (or parts
of the plane) that takes lines to lines. The projec-
tive group, which is the largest such group, figures
prominently in our study.
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FIGURE 1

In Section 2, we describe what happens for pen-
tagons and hexagons. The basic fact is that the
pentagons P and P’ are always projectively equiv-
alent, and the hexagons H and H® are always pro-
jectively equivalent. This is to say that there are
projective transformations Tp and Ty of the pro-
jective plane for which Tp(P) = P' and Ty (H) =
H®W,. We study the correspondences P — Tp in
detail and the correspondence H — Ty in much
less detail.

In Section 3, we present what we know about
the pentagram map in general. Our main result
is that, for every strictly convex n-gon P, the se-
quence {P(k)} shrinks exponentially fast to a single
point, which thus constitutes a projectively natu-
ral “center” for P. This result follows from the fact
that the sequence lies in a compact subset of the
space of projective classes of n-gons.

The facts run out after Section 3. In Section 4,
we present a conjectural picture of the general be-
havior of the pentagram map on convex polygons.
The picture leads to the statement that asymptot-
ically the sequence P, P', P”,... behaves like the
sequence P, Tp(P),T3(P),... for some projective
transformation Tp. Section 4 also contains a de-
scription of what happens when the pentagram
map is defined in the complex projective plane.
In Section 5, we show how the pentagram map is
a discrete approximation to a certain flow defined
on parametrized curves and give a heuristic deriva-
tion of the equation of this flow. The resulting flow
seems to be of current interest to physicists. If the
discrete process is indeed a good approximation to
the flow, it probably would be useful for computer
simulations.

1. PROJECTIVE GEOMETRY

The following is a list of facts about projective
geometry that we will use throughout the paper.
Most of them can be found in [Hilbert and Cohn-
Vossen 1952] or are easy to derive from scratch.

RP? is the space of lines through the origin in
R2. Similarly, CP? is the space of complex lines
through the origin in C3. For simplicity, we will
speak of the real case. Everything we say applies
verbatim to the complex case. By intersecting the
lines of R3 with the plane {z = 1}, we consider R?
as a subset of RP?. The set RP? — R? is called
the line at infinity.

The general linear group GL3(R) acts on RP?
because linear transformations take lines to lines.
If we quotient GL3(R) by scalar multiplication, the
resulting group PGL3(R) still acts on RP?. Ele-
ments of this group are called projective transfor-
mations. Two sets are said to be projectively equiv-
alent if there is a projective transformation taking
one to the other.

A line of RP? is the set of lines of R? contained
in a two-dimensional linear subspace. In particu-
lar, the line at infinity corresponds to the subspace
{z = 0}. Projective transformations permute these
lines. The projective transformations that preserve
the line at infinity restrict to give the affine trans-
formations of R2.

A set of points is said to be in general position
in the projective plane if no three points lie on the
same line. In particular, a quadrilateral in RP? is
a set of four general position points. Here is a con-
venient characterization of the projective group:
There is a unique projective transformation that
takes one specified quadrilateral to another speci-
fied quadrilateral.

Suppose l1,...,l4 are four linear subspaces of
R?. Suppose further that s; is the slope of [;. Then
the cross ratio

(81— s2)(83 — 54)

X(l1,19,13,14) =
(17 2,503, 4) (S]_ —83)(82 —84)

is invariant under projective transformations that
preserve the origin of R?. This implies that X
extends to a well-defined invariant of four cycli-
cally ordered lines of RP?, which contain a com-
mon point. Moreover, if m is any line that does



not contain the origin, and m1, me,ms, my are its
intersections with [y, lo, 3,4, we have

|my — mal| [[m3 — my|

X(l1,l2,13,14) = | .
[[my — ms]| [[ma — myl|
This formula defines the cross ratio of four cycli-
cally ordered collinear points. The definition is in-
dependent of the choice of the lines /; and is again
projectively natural.

In particular, suppose mi and mo are two lines
and p is a point belonging to neither line. Then p
defines a projection map m,, : m; — mo (Figure 2).
It is not hard to verify that m, preserves cross
ratios of points.

FIGURE 2.

The projection m,, with center p takes
1 to y; and xs to yo.

In the next section, we will work with conjugacy
classes of (diagonalizable) projective transforma-
tions. Let T" be an element of PGL3(R) and let T

be a representative of 7' in GL3(R). Define o;(7")
by the formula

det(T — XI) = =X3 + 01 (T)A2 — oo (T)A + o3(T).

Then o0102/03 and o3 /o3 only depend on the con-
jugacy class of 7" in PGL3(R), and completely de-
termine the conjugacy class of a diagonalizable el-
ement of PGL3(R).

2. PENTAGONS AND HEXAGONS

Pentagons

The pentagram map is defined on a pentagon P—
even a nonconvex one—as long as the five points
of P are in general position in the (complex) pro-
jective plane.

The basic fact for pentagons is the following.
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Theorem 2.1. The pentagons P and P’ are projec-
tively equivalent.

This means that there is a projective transfor-
mation Tp so that Tp(P) = P’. 1 discovered this
experimentally, and the fact is easy to prove alge-
braically. John Conway (personal communication)
also discovered this fact years ago. He has a slick
proof, which we sketch here.

Proof: Given a pentagon P = (p1,...,ps), let [; ;
be the line containing p; and p;. Define

X = X (=16 le—2,ks ler2,k> et 1,1) 5

where X is the cross ratio (Section 1). We call X},
a corner invariant of P. It is easy to verify that
the projective class of P is completely determined
by its corner invariants. By symmetry, we just
have to see that X5(P) = X5(P'), for example.
Figure 3 shows that projection from the point ps

b1

Pa

¥
\

D2
FIGURE 3

takes (p1,ps, ph, pa) to (ply, P, ps, ). Therefore,
X5(P) = X(p17p£%7p127p4) = X(pilapgvpg7pll)
= X(p,p5,p5,14) = X5(P').

The third equality is a general symmetry of the
cross ratio. This proof works just as well in the
nonconvex case. O

Since the pentagram map commutes with pro-
jective transformations, we have

PM™ = T2(P).
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If Tp is known, this formula tells practically all
there is to know about the successive images of P
under the pentagram map.

First we discuss Tp when P is a convex planar
pentagon. In this case, we will usually take P to
be the planar domain consisting of both the “pen-
tagon proper” and its interior. In our situation,
we have P’ ¢ P ¢ PUY. From this, it is easy to
deduce that Tp fixes a unique point ¢(P) € P and
a unique line [(P) that misses P entirely. Further-
more, P(™) shrinks to the point ¢(P) as n — oo.
The “asymptotic shape” of P is determined by
the differential

d(P) = dTp|c(p).

Theorem 2.2. For a convex pentagon P, the deriva-
tive d(P) is diagonalizable.

In fact, the eigenvalues of d(P) are equal if and
only if P is projectively equivalent to the regular
pentagon (this will be shown later in the formu-
las). This means that the pentagram map shrinks
a random convex pentagon exponentially fast to
a point at two different exponential rates. If the
successive images of such a pentagon are rescaled
to have constant area, they become exponentially
long and thin in shape.

Proof: We first move P by a projective transfor-
mation so that ¢(P) = 0 and [(P) is the line at
infinity. Then d(P) = Tp. If d(P) is not diagonal-
izable, we can, by conjugation, assume either that
d(P) is upper triangular or that d(P) is a rotation
by 6 # 180°. We will argue that the latter case
cannot happen. A slight modification of the same
argument rules out the former case as well.

If d(P) = Tp is a rotation by, say, more than
180°, the two lines pap3 and % (in the notation
of Figure 3) converge to the right of P. This means
that

area Apap3ps > area Apopspi.

This argument can be repeated beginning with any
of the five sides of P. Going counterclockwise, we
obtain

area Apzpsps > area Apipaps > area Apspips
> area Apypsp1 > area Apspsps > area Apapsaps,
which is a contradiction. O

Now consider a general pentagon P. If we want
to see what the successive images of P look like

under the pentagram map, it suffices to consider
the behavior of the pentagram map on any pro-
jective image of P. Choosing different projective
images means looking from different perspectives.
Concretely, we have the formula

TG(P) =Go Tp o G_l

for any projective transformation G. This gives us
a correspondence between projective classes of pen-
tagons and conjugacy classes of projective transfor-
mations.

This correspondence carries over to pentagons
in the complex projective plane. One just puts
the word “complex” before every statement. Let
2 be the set of (complex) projective classes of pen-
tagons. We will abbreviate this correspondence by
[P] — [Tp]. If a pentagon P is normalized so that
its first four points coincide with the points (1, 0),
(0,0), (0,1) and (1, 1), the fifth point uniquely de-
termines the conjugacy class. To satisfy the gen-
eral position condition, this fifth point must miss
the six (complex) lines joining these four points
two by two. In other words, 2 can be identified
with the complement of six particular (complex)
lines in the (complex) projective plane.

Recall from Section 1 that the functions o102/03
and ai)’ /o3 uniquely determine the conjugacy class
of a projective transformation. Therefore our cor-
respondence [P] — [Tp] can be described by these
two functions. I found the following equations ex-
perimentally:

0102

— = -1
o3
_ot(zy)  zmr—y)(lz+y—1)
Ve = ey T v - D)

The equation for ¥ extends by continuity to points
in Q — C?, giving rise to a holomorphic function.
We omit the derivation of these equations. They
can easily be verified by computer or derived by
using, say, Mathematica [Wolfram 1991].

Our formulas say that the correpondence [P] —
[Tp] is determined by the single holomorphic func-
tion 7. Furthermore, the formula for 1 allows one
to compute the value of ¢ explicitly for any given
projective class of pentagons. In particular, one
can verify the statements made earlier about the
action of the pentagram map on a random convex
pentagon.



Hexagons

Let H be a labeled hexagon, that is, a sextuple of
points in general position in the (complex) pro-
jective plane. Let H# denote the hexagon ob-
tained by permuting the points of H according to
the permutation (123456) — (456123). Note that
H## = H.

The pentagram map is well-defined only on an
open dense set of labeled hexagons, because for a
sextuple of points in general position the intersec-
tions of diagonals need not be in general position.

The basic fact for hexagons is the following.

Theorem 2.3. The hexagons H# and H" are projec-
tively equivalent.

Again I discovered this by computer. The alge-
bra required to verify this fact is monstrous, but
possible to do. One can construct an alternate
“complex analysis” proof, based on the technique
presented in the next section. We omit the details,
because they are long and tedious. Another reason
for the omission is that neither the algebraic proof
nor the analytic proof gives any clue to why this
theorem should be true. It would be nice to have
a conceptual proof.

Let Ty be the projective transformation satisfy-
ing Ty (H#) = H". Then we have the formula

HYW) — 77 (H).

I have not spent much time analyzing the corre-
spondence [H]| — [Tx], but I can make several re-
marks, analogous to those for pentagons.

In the case of convex hexagons, the fact that
H' Cc H c H~! implies that Ty fixes a point
¢(H) € H and a line [(H) missing H entirely. This
means again that the long-term behavior of the
pentagram map on H is determined by the differen-
tial d(H) = Tg|c(mr)- Computer experiments show
that d(H) is not diagonalizable in general—both
other possible conjugacy classes of maps (shears
and rotations) occur. Hexagons for which d(H) is
not diagonalizable can be found by looking at ran-
dom perturbations of the regular hexagon. They’re
hard to find, but they’re there.

For general hexagons, the correspondence [H] —
[Trr] ought to have a description in terms of the
two functions o109/03 and 03 /03. Both functions
are holomorphic and nonconstant, but I have not
worked out the formulas.
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3. CONVEX POLYGONS

In this section, we consider the pentagram map
on strictly convex planar polygons. For short, we
will usually just say “convex” instead of “strictly
convex.” Sometimes it is convenient to use the pro-
jective plane instead of the Euclidean plane. We
will indicate when we switch back and forth.

Computer experiments show that, in general, the
pentagram map on projective classes of polygons
is not periodic. In other words, if >, denotes the
manifold of convex n-gons up to projective equiva-
lence, the induced map [P] — [P’] on X, does not
return to the identity under iteration.

By normalizing the first four points of an n-
gon, it is easy to see that X, is an open (2n — 8)-
dimensional ball. One can get a rough impres-
sion of the orbits in ¥, by looking at the image
of a single point. This means looking at certain
two-dimensional projections of the orbit. The first
thing I noticed was that the orbit of any point in
Y., is always contained in a compact subset of 3,,.

Assuming this for the moment, we can prove
that the pentagram map shrinks convex polygons
to points exponentially fast.

Theorem 3.1. If P is a convex planar polygon, there
is some np < 1 for which diam P*¥) < n% diam P.

Proof: The diameter of a convex polygon is equal
to the largest distance between two vertices. If,
contrary to the theorem’s statement, the ratio be-
tween the diameters of consecutive polygons can
get arbitrarily close to 1, it follows that the quan-
tity

[1bs = ¢l

max ————
s llas —ds|’

where ag, by, cs, ds are the points shown in Figure 4
and s ranges over all pairs of distinct vertices, also
gets arbitrarily close to 1. But it is easy to see that
this maximum ratio is bounded away from 1 in an
open neighborhood of any convex polygon. Since,
by the compactness assumption, we can cover the
orbit of p with a finite number of such open neigh-
borhoods, we arrive at a contradiction. O

To complete the proof of Theorem 3.1, we have
to show that the orbit of P in ¥ = >J,, indeed has
compact closure. The following proof relies essen-
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FIGURE 4

tially on a miracle. While searching for invariants
of the pentagram map, I noticed that the equation

[ X®) = [ X (P)

peP pEP!

holds true for every convex polygon, where X, (P)
is the corner invariant introduced in the beginning
of Section 2. The proof is instructive because it
illustrates one method for establishing the truth of
a computer-generated equation that seems impos-
sibly large.

Lemma 3.2. The orbit of any polygon P under the
pentagram map has compact closure in 3.

Proof: Set f(P) = [I,ep Xp(P). The lemma is an
immediate consequence of the following properties
of the function f:

1. The level sets of f are compact in X.
2. f(P)=f(P).
The function f is the product of n functions, each
being the cross ratio of four lines determined by
P. To study f, we need information on how the
cross ratio of four given lines changes as the lines
change.

Given two functions g1 and g, we write g1 ~ g9
if there are positive constants C and e such that

C ™ gat)
for —e <t <e. Let S(t) = {l1(¢),12(t),13(¢), la(t) }
be a one-parameter family of ordered quadruples of
lines such that each individual quadruple contains
a common intersection point. We say that S(t)
has a simple (7, j) degeneration if /(l;(t),1;(t)) ~ ¢

and if Z(Iy(t),14(t)) ~ 1 for all remaining pairs
(p,q). It is easy to deduce the following infor-
mation about the behavior of the function Z(t) =
X(ll(t), lg(t), lg(t), l4(t)) ast — 0.

Degeneration Asymptotics
(1,2) Z ~t
(1,3) Z ~ 1/t
(1,4) Z ~1
(2,3) Z ~1
(2,4) Z ~ 1/t
(3,4) Z ~t

Proof of property 1: We show that, if {P,} € ¥ is
a sequence with no convergent subsequence, f(F,)
converges to 0, and therefore { P;} cannot be con-
tained in a level set of f; thus the level sets of f
are compact.

We normalize so that the first four vertices of
P, are (1,0), (0,0), (0,1) and (1,1). Let ps(n)
be the fifth vertex of P,; then ps(n) must lie in
the interior of the triangle T € RP? bounded by
the lines y = 0, y = 1 and x = 0. By taking
subsequences and possibly relabeling, it suffices to
prove that {ps(n)} — 7 € 0T implies f(P,) — 0.

Referring to Figure 5, we see that if ps = p5(n)
approaches any point of 07" on the line y = 0 (in-
cluding the point at infinity), the corner invari-
ant X9 approaches 0, and consequently so does f
(since, for a strictly convex polygon, every corner

b3 P4

D2 P1
FIGURE 5

invariant is positive and less than 1). Likewise, if
p5 approaches the line y = 1, we have X3 — 0. Fi-
nally, if p5 approaches the line x = 1, consideration
of the sixth vertex in P, (which lies in the triangle
formed by the line z = 0, the segment p;ps and the
extension of the segment p4ps) shows that X4 — 0.

Proof of property 2: Given a strictly convex planar
n-gon P, let P, denote the set of n ordered points
in RP? obtained by replacing the last point of P
by the point x. Beginning with the regular n-gon,
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FIGURE 6. The cross ratio X; (say) has a zero if
and only if the directions p1pg and p1p_; coincide
or the directions p1p2 and pips coincide. As only
T = pg varies, this happens if and only if pg, p; and
p_1 are aligned, that is, if and only if py = {3, _1NL.
Similar arguments give the zeros and poles of all
the Xi-

we can move one point at a time until we obtain
any other polygon P. Therefore, it suffices to prove
that for every P, the function

e
#r(0) = g

is constant wherever it is defined.

Let P be a fixed polygon and L a fixed line of
CP2. Assume for the sake of exposition that P
has enough points so that, in the argument be-
low, all distinctly labeled points are in fact dis-
tinct. Also assume that L is in general position
with respect to all lines mentioned below: There
should be no triple intersections and no intersec-
tions at infinity. Since our constructions will al-
ways involve only finitely many lines, one can take
L to be a small perturbation of any given line. Let
h(z) = f(P:)|L and h'(z) = f(P;)|L. We prove
that @p|r is constant by showing that the ratio-
nal functions h and h’ have the same singularities.
Recall that h = [] X; and &’ = [[ X}, where X}(z)
is the j-th corner invariant of the polygon P.. To
compute the singularities of A and h', we just have
to compute the corresponding singularities of the
X; and the X7.

Let g; j = l; ;N L, where [; ; is the line joining p;
and p;. Away from the points g; j, h is finite and
nonzero because every X; is. As x varies on L,
only the five functions X o, X 1, Xg, X1 and X
change at all, where the indices are taken modulo
n. By reasoning as in Figure 6, or by using the
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FIGURE 7. The cross ratio X7 5 has a zero if and
only if the directions p} ;p's and p) ;p_ 5 coincide
or the directions p} zp} 5 and p} 5p4 5 coincide. As
only x = pgo varies, the second coincidence can-
not occur, and the first entails p’; = p’_ ;, that is,
x = 13,1 N L. Similar arguments give the zeros
and poles of all the X/.

table of asymptotics given earlier, we get for these
functions the singularities listed in Table 1.

Function Poles Zeros
X_9 q—2,—3 q-1,—2
X1 q-1,-3 qi,—1
Xo q2,-1,q1,-2 q1,2,9-1,-2
X1 q1,3 qi,—1
X2 42,3 q1,2

TABLE 1

Computing the singularities of the X/, though
more tedious, is once more just a matter of going
through all possibilities for coinciding directions;
see Figure 7 for a typical case. It is convenient
to label the vertices of P, with half-integers, so
the functions comprising b’ are X5, X| - ... As z
varies on L, only the eight functions X' 4 ...,
X} 5 are affected. The resulting singularities are
listed in Table 2.

From Tables 1 and 2, we see that A =[] X; and
k" =] X} have the same singularities, and there-
fore that @p|r, is constant. This implies that pp is
constant everywhere, because any two points in the
domain of ¢p can be connected to an appropriate
third point by allowable lines L' and L”.

Our proof is complete except for the assumption
that P has sufficiently many vertices. We com-
plete the proof by showing that the invariance of f
on convex 2k-gons implies its invariance on convex
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Function Poles Zeros
X’—3.5 q-2,-3 q—-2,—4
XL2 5 q—2,—4 q—2,—1
X5 q2,—1 q1,—1
X' 5 q1,3 q1,2

,'5 qd—1,-3 qd—1,-2
Xi.5 q1,—2 q1,—1
X§.5 q2,4 q1,2
X§.5 q2,3 g2.4

TABLE 2

k-gons. Choose a family {P,} of (nonconvex) 2k-
gons, each of which more and more nearly wraps
twice around a fixed k-gon P. By analytic contin-
uation, f(P,) = f(P)). By continuity,

F2(P) = lim f(P,) = lim f2(P,) = f*(P').

Since f(P) and f(P') are both positive, we get
f(P) = f(P").

This concludes the proof of Lemma 3.2, and also
of Theorem 3.1. O

Theorem 3.1 gives us a way to assign to P a
projectively natural center ¢(P) = ()P, which
is analogous to the center defined for pentagons in
the previous section. It is easy to see that c(P)
varies continuously with the vertices of P. A pro-
jective center is like the center of mass, but it is
more symmetric. The center of mass is natural
with respect to the affine group, whereas a pro-
jective center is natural with respect to the larger
projective group.

Open Questions

1. What are necessary and sufficient conditions on

a convex polygon P in order for P and P” to

be projectively equivalent? I can prove that it

suffices for P to be simultaneously inscribed in,

and circumscribed about, a conic. Is this con-

dition also necessary?

. In Theorem 3.1, are there effective estimates for
n(P) based on the geometry of P?

. Does the projective center ¢(P) depend analyt-
ically on the vertices of P?

. Does Theorem 3.1 have a conceptual proof, that
is, one that doesn’t require the aid of a miracle?

4. DYNAMICS

Saying that the orbits of points in ¥, are precom-
pact (Theorem 3.1) still leaves a lot to the imagi-
nation. Probably, more can be said.

Computer evidence, such as that shown in Fig-
ure 8, suggests that the pentagram map is recur-
rent on Y.,,. This is to say that every [P] € 3, is an
accumulation point of the sequence [P'],[P"],...
Another way of putting this is that infinitely many
iterates of a convex polygon P are projectively
equivalent to P, up to an arbitrarily small error.

Conjecture 4.1. The pentagram map s recurrent on
Y.

Here is a description of Figure 8. If P is a poly-
gon, let P denote the projectively equivalent poly-
gon whose first four points correspond with the
unit square. Also, let Py dellgte the k-th vertex of

P. Then Figure 8 shows P(27)5 for 1 < n < 200.
In other words, each point in Figure 8 is the pro-

1
L0612
0.9 R Vs
e }
08 6.0 ; 7 2
P i2
071 10,7
0.6 s 8
4’~ .. ) ”,.. 6 3
0.5 o e tee L, o < ) 14
20
—1 _8 _6 —4 2 5 4

FIGURE 8.

Projection of the orbit in X7 of a bilaterally symmetric heptagon under the pentagram map,

showing that the orbit is recurrent (Conjecture 4.1). The normalization is described in the paragraph following

Conjecture 4.1.



jection of some point in %,,. To generate Figure 8,
we took the simplest nontrivial example, which is
a heptagon having bilateral symmetry. The pro-
jection of this orbit in ¥, is a simple closed curve,
indicating that the orbit of P in X7 is a simple
closed curve. Furthermore, the successive points
of the orbit seem to be evenly spaced about this
curve.

The next simplest case is that of a generic hep-
tagon. A picture analogous to Figure 8 can be
drawn for this case as well. One can best appre-
ciate such a picture by watching it being drawn
dynamically. I have done so, and my impression
is that the orbit of a generic point in X7 fills out
a two-dimensional torus. This seems to be true in
general, though the computer evidence is harder to
interpret. Here is one form of this conjecture:

Conjecture 4.2. Generically, the closure of an or-
bit in X, is a torus (of some intermediate dimen-
sion). There is a natural flat metric on this torus
for which the restriction of the pentagram map is
an isometry.

This says that the orbit of [P] is recurrent in
a very orderly way. If [P("™)] is very close to [P],
there is a projective transformation 7, for which
P =T, (P) is very nearly true. Perhaps there is
a well-defined limit
Tp = lim T/

n—oo
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If this is true, asymptotically the sequence P, P,
P”, ... remains close to the sequence P, Tp(P),
T2(P), ... As for pentagons and hexagons, this
would give a way to predict the general behavior
of the pentagram map on P.

The pentagram map can be defined in a wider
setting. Let S, denote the set of n-tuples of general
position points in the complex projective plane.
Also let

Sp(k)={P: |j|<k= PY es,}.

It is easy to see that S, (k) is an open dense subset
of CP?x - - - x CP? that has full measure. (Its com-
plement is a finite union of lower-dimensional sub-
varieties.) Furthermore, S, (k) is PGL3(C)-equi-
variant. Consequently, all forward and backward
iterates of the pentagram map are well-defined on
the full-measure equivariant subset (.S, (k). Tak-
ing the quotient by the projective group, one has
a well-defined iteration in

In some sense, €2, is the complexification of the set
Y discussed in Section 3.

Computations like the one shown in Figure 9
support the following conjecture:

Conjecture 4.3. The pentagram map is recurrent on

Q,,.
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FIGURE9. The action of the pentagram map on a 14-gon that wraps twice around the regular heptagon. (We
take a small perturbation to produce some interesting behavior.) After about thirty iterations, the polygon
nearly returns to its original shape (up to a projective transformation).
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Imagine writing out the Encyclopaedia Britan-
nica by hand and then taking a fine polygonal ap-
proximation. (You have to connect the last letter
to the first one to get a closed polygon.) Applying
the pentagram map several thousand times would
turn the script into a seemingly random scribble.
However, Conjecture 4.3 says that after an enor-
mous number of additional iterations, the scribble
would reassemble itself into another handwritten
version of the Encyclopaedial

5. THE LIMITING FLOW

The pentagram map seems to be a discrete ana-
logue of a flow on parametrized curves: As we
take finer and finer polygonal approximations to
the curve, the action of the pentagram map ap-
pears to converge to a flow (Figure 10). We give
here a heuristic derivation of the equation for this
limiting flow.

Suppose P, is an n-gon consisting of n points
on the curve C that are evenly spaced according
to the parameter. The corresponding vertices of
P, and P! are about n~2 apart. To move P, a
distance t away from itself, one needs to make tn?
iterations. If the pentagram map does converge to
a flow Cy, we should have

dCi(s) = lim n?N,(s),
dt 0 n—00

FIGURE 10.

where N, (s) is the vector from pm (the i-th ver-

K3
tex of P(™ corresponding to the value s of the

parameter) to Pi(n—i—Z) .

Computing this limit is quite messy algebrai-

(n+2)

cally. However, it is easy to see that P, is ap-

proximated by the intersection of the lines Pl-(f% Pi(f:%
and PZ(_T_L%PZ(I”% Denoting by M,(s) the vector from

Pi(n) to this intersection point, we have

lim n’N,(s) = lim n?M,(s).

n—oo n—oo
This limit is much easier to compute:
nlgrgo n>M,(s) = C"(s) — %W(S)C’(s),
_det(C',C")
— det(C', 0"’

the derivatives being with respect to the parameter
s. Thus the evolution equation is

dCt(S)
at |y

=C"(s) — 2W(s)C'(s).

Recall that our proof of Theorem 3.1 relies on
the function

f(P)= 1] Xu(P).

veP

The equation f(P) = f(P') has an analogue here.
The quantity f(P,) tends to oo with n, so we have
to be a little careful taking limits. Assuming that

Action of the pentagram map on 10-, 19- and 30-sided polygonal approximations to the parame-

trized circle (cos 0(t),sin6(t)), where 6(t) = t+.1cost+.07sin(2t+7/3)+.1 cos(3t+m/5). The spacing between
successive images appears to be the same in the three pictures because the time step has been renormalized: it
corresponds to one iteration of the pentagram map in the first picture, four in the second and nine in the third.



v = C(s) is always a vertex of P,, the following
limit is well-defined:

(s) = lim n*log(9 X,(Py)).

It is not hard to work out the equations
A1z A3\ ? A

b= <£> _3 <£> _g3An

A12 A12 A12

Ay = det(C, 0)).

where

Then the integral [q 1(s)ds is conserved by the
flow.

The invariant v is one of the two projective dif-
ferential invariants of a (nondegenerate) curve im-
mersed in the projective plane. Both the flow and
the conserved quantity are known to physicists (see
for example [Drinfeld and Sokolov 1985; DiFran-
cesco et al. 1990]). I don’t know how well the pen-
tagram map approximates the flow. It would be
nice if the approximation was good, because then
the discrete process would give an easy way to sim-
ulate the flow by computer.
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